Задача B5: вычисление площади методом обводки

3 октября 2013

Сегодня мы разберем самый простой прием, который используется в задаче B5 ЕГЭ по математике для нахождения площадей фигур, начерченных на координатной сетке. Этот метод также известен как метод описанного прямоугольника.

Рассмотрим самый простой случай:

  1. Фигура наложена на координатную сетку;
  2. Все вершины фигуры лежат в узлах этой сетки;
  3. Все внутренние углы фигуры меньше 180 °. Т.е. фигура является выпуклой.

Для работы нам потребуются две формулы:

  1. Sтр = 0,5ab — площадь прямоугольного треугольника с катетами a и b.
  2. Sпр = ab — площадь произвольного прямоугольника со смежными сторонами a и b.

Итак, задача B5 из реального ЕГЭ по математике:

Задача B5. Найдите площадь пятиугольника, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см. Ответ дайте в квадратным сантиметрах.

Пятиугольник на координатной сетке в задаче B5

В первую очередь строим описанный прямоугольник, причем так, чтобы на каждой из его сторон находилась хотя бы одна из сторон исходной фигуры.

В нашем случае оказалось, что три вершины исходной фигуры действительно лежат на сторонах описанного прямоугольника. А вот две оставшиеся лежат внутри красного периметра, поэтому для них требуется дополнительное построение. Проведем из каждой вершины высоты к ближайшим сторонам:

Пятиугольник и описанный прямоугольник в задаче B5

Готово! Мы получили прямоугольник, внутри которого заключена наша фигура, а также 7 маленьких фигур, чьи площади считаются по формулам прямоугольного треугольника и прямоугольника. Эти дополнительные фигуры называются разбиением.

Давайте обозначим площади этих фигур: S1, S2, S3, S4, S5, S6 и S7. Получим следующую картинку:

Треугольники и прямоугольники дополняющего разбиения в задаче B5

Теперь считаем каждую из обозначенных площадей. Имеем:

S1 = 0,5 · 1 · 2 = 1;
S2 = 0,5 · 2 · 2 = 2;
S3 = 0,5 · 1 · 2 = 1;
S4 = 1 · 1 = 1;
S5 = 0,5 · 4 · 1 = 2;
S6 = 0,5 · 1 · 4 = 2;
S7 = 1 · 1 = 1.

Далее считаем общую площадь красного прямоугольника. На самом деле это квадрат, каждая сторона которого равна 5. Итого площадь равна:

S0 = 5 · 5 = 25

Теперь осталось найти площадь закрашенной фигуры — ту самую, которую от нас и просят найти в задаче B5 ЕГЭ по математике. Для этого из общей площади S0 надо вычесть площади тех кусочков S1, S2, ..., S7, которые мы только что считали. Получим:

S = S0 − (S1 + S2 + ... + S7) = 25 − (1 + 2 + ... + 1) = 25 − 10 = 15

Вот и все решение! Площадь закрашенной фигуры равна 15. Надеюсь, этот урок будет полезен тем, кто начинает готовиться к ЕГЭ по математике.

Смотрите также:
  1. Тест к уроку «Площади многоугольников на координатной сетке» (легкий)
  2. Площади многоугольников на координатной сетке
  3. Как помочь школьнику изучать математику
  4. Пробный ЕГЭ 2012. Вариант 8 (без производных)
  5. Пробный ЕГЭ по математике 2015: 3 вариант
  6. Задача C1: тригонометрия и показательная функция — 1 вариант