Сложение и вычитание десятичных дробей

15 августа 2011

Чтобы найти сумму или разность двух чисел, записанных в десятичной форме, надо выполнить три шага:

  1. Записать числа в столбик таким образом, чтобы соответствующие разряды совпадали. Главный ориентир — десятичные точки. Они не являются отдельным разрядом, но должны стоять на одной вертикали;
  2. Сложить или вычесть полученные дроби столбиком — подобно тому, как мы складываем и вычитаем обычные числа. Не забудьте «внедрить» десятичную точку между соответствующими разрядами;
  3. Полученное число и будет ответом — больше ничего делать не надо.

Как видите, сложение десятичных дробей почти ничем не отличается от сложения обычных чисел. Самое сложное — правильно сопоставить разряды слагаемых, чтобы десятичные точки находились на вертикальной прямой, друг под другом.

Задача. Найдите значение выражений: 8,125 + 17,4; 3,5 + 121,048.

Для каждого выражения приведем правильную запись и две неправильные (самые распространенные). Сначала — правильные:

Сложение двух десятичных дробей

Теперь рассмотрим неправильные решения. В первом случае все числа «прижаты» к левому краю, во втором — к правому. Ответы получатся совсем другие:

А вот так складывать десятичные дроби не надо!

Как видите, ничего общего с тем, что должно получиться на самом деле.

Если в одном из слагаемых нет десятичной точки, ее ставят справа от всего числа. Например, возьмем числа 5,83 и 72. В этом случае операция сложения будет выглядеть так:

Сложение десятичной дроби и целого числа: 5,83 + 72

Кто-то скажет, что все эти отступы, сдвиги и запятые — ненужные сложности, и лучше работать «по старинке». Что ж, я никого не собираюсь переубеждать. Отмечу лишь, что новая технология всегда требуют более высокой квалификации от тех, кто собирается ее использовать. В этом плане десятичные дроби — следующий уровень развития после обычных.

Задача. Найдите значение выражений: 7,34 + 18,5; 13 + 0,25; 11,3 − 4,128; 5,21 − 11.

Сложение и вычитание десятичных дробей

Эти примеры показывают, насколько упрощаются вычисления, когда дроби записаны в десятичной форме. Никаких дополнительных множителей, никаких общих знаменателей.

Чтобы почувствовать разницу, решим ту же задачу традиционным методом. Для этого переведем все десятичные дроби в обычные. Взгляните:

Задача. Найдите значение выражений: 7,34 + 18,5; 13 + 0,25; 11,3 − 4,128; 5,21 − 11.

Итак, переводим все десятичные дроби в обычные и считаем по классической схеме:

Сложение и вычитание дробей традиционным способом (долго)

Мы специально не стали выполнять обратный переход — от обычной дроби к десятичной — чтобы немного сократить вычисления.

Видно, что длина решения выросла многократно. Поэтому старайтесь работать с десятичными дробями везде, где это возможно.

Смотрите также:
  1. Умножение и деление десятичных дробей
  2. Как представить обычную дробь в виде десятичной
  3. Пробный ЕГЭ 2012. Вариант 3 (без логарифмов)
  4. Уравнение касательной к графику функции
  5. Метод узлов в задаче B5
  6. Как решать задачи про летающие камни?