Основное тригонометрическое тождество

12 ноября 2011

Это последний и самый главный урок, необходимый для решения задач B11. Мы уже знаем, как переводить углы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а также умеем определять знак тригонометрической функции, ориентируясь по координатным четвертям (см. урок «Знаки тригонометрических функций»).

Дело осталось за малым: вычислить значение самой функции — то самое число, которое записывается в ответ. Здесь на помощь приходит основное тригонометрическое тождество.

Теорема

Основное тригонометрическое тождество. Для любого угла α верно утверждение:

sin2 α + cos2 α = 1.

Эта формула связывает синус и косинус одного угла. Теперь, зная синус, мы легко найдем косинус — и наоборот. Достаточно извлечь квадратный корень:

Выражение синуса и косинуса через основное тригонометрическое тождество

Обратите внимание на знак «±» перед корнями. Дело в том, что из основного тригонометрического тождества непонятно, каким был исходный синус и косинус: положительным или отрицательным. Ведь возведение в квадрат — четная функция, которая «сжигает» все минусы (если они были).

Именно поэтому во всех задачах B11, которые встречаются в ЕГЭ по математике, обязательно есть дополнительные условия, которые помогают избавиться от неопределенности со знаками. Обычно это указание на координатную четверть, по которой можно определить знак.

Внимательный читатель наверняка спросит: «А как быть с тангенсом и котангенсом?» Напрямую вычислить эти функции из приведенных выше формул нельзя. Однако существуют важные следствия из основного тригонометрического тождества, которые уже содержат тангенсы и котангенсы. А именно:

Следствие

Для любого угла α можно переписать основное тригонометрическое тождество следующим образом:

Выражение тангенса и котангенса через основное тригонометрическое тождество

Эти уравнения легко выводятся из основного тождества — достаточно разделить обе стороны на cos2 α (для получения тангенса) или на sin2 α (для котангенса).

Рассмотрим все это на конкретных примерах. Ниже приведены настоящие задачи B11, которые взяты из пробных вариантов ЕГЭ по математике 2012.

Задача

Найдите sin α, если известно следующее:

Значение косинуса и угла в радианах
Решение

Нам известен косинус, но неизвестен синус. Основное тригонометрическое тождество (в «чистом» виде) связывает как раз эти функции, поэтому будем работать с ним. Имеем:

sin2 α + cos2 α = 1 ⇒ sin2 α + 99/100 = 1 ⇒ sin2 α = 1/100 ⇒ sin α = ±1/10 = ±0,1.

Для решения задачи осталось найти знак синуса. Поскольку угол α ∈ (π/2; π), то в градусной мере это записывается так: α ∈ (90°; 180°).

Следовательно, угол α лежит во II координатной четверти — все синусы там положительны. Поэтому sin α = 0,1.

Ответ

0,1

Задача

Найдите cos α, если известно следующее:

Значение синуса и угла в радианах
Решение

Итак, нам известен синус, а надо найти косинус. Обе эти функции есть в основном тригонометрическом тождестве. Подставляем:

sin2 α + cos2 α = 1 ⇒ 3/4 + cos2 α = 1 ⇒ cos2 α = 1/4 ⇒ cos α = ±1/2 = ±0,5.

Осталось разобраться со знаком перед дробью. Что выбрать: плюс или минус? По условию, угол α принадлежит промежутку (π 3π/2). Переведем углы из радианной меры в градусную — получим: α ∈ (180°; 270°).

Очевидно, это III координатная четверть, где все косинусы отрицательны. Поэтому cos α = −0,5.

Ответ

−0,5

Задача

Найдите tg α, если известно следующее:

Значение еще одного косинуса и угла в радианах
Решение

Тангенс и косинус связаны уравнением, следующим из основного тригонометрического тождества:

Выражение тангенса через косинус

Получаем: tg α = ±3. Знак тангенса определяем по углу α. Известно, что α ∈ (3π/2; 2π). Переведем углы из радианной меры в градусную — получим α ∈ (270°; 360°).

Очевидно, это IV координатная четверть, где все тангенсы отрицательны. Поэтому tg α = −3.

Ответ

−3

Задача

Найдите cos α, если известно следующее:

Значение еще одного синуса и угла в радианах
Решение

Снова известен синус и неизвестен косинус. Запишем основное тригонометрическое тождество:

sin2 α + cos2 α = 1 ⇒ 0,64 + cos2 α = 1 ⇒ cos2 α = 0,36 ⇒ cos α = ±0,6.

Знак определяем по углу. Имеем: α ∈ (3π/2; 2π). Переведем углы из градусной меры в радианную: α ∈ (270°; 360°) — это IV координатная четверть, косинусы там положительны. Следовательно, cos α = 0,6.

Ответ

0,6

Задача

Найдите sin α, если известно следующее:

Значение еще одного котангенса и угла в радианах
Решение

Запишем формулу, которая следует из основного тригонометрического тождества и напрямую связывает синус и котангенс:

Выражение синуса через тангенс

Отсюда получаем, что sin2 α = 1/25, т.е. sin α = ±1/5 = ±0,2. Известно, что угол α ∈ (0; π/2). В градусной мере это записывается так: α ∈ (0°; 90°) — I координатная четверть.

Итак, угол находится в I координатной четверти — все тригонометрические функции там положительны, поэтому sin α = 0,2.

Ответ

0,2

Смотрите также:
  1. Радианная и градусная мера угла
  2. Основное тригонометрическое тождество
  3. Как формулы приведения работают в задаче B11
Дополнительно:
  1. Комментарий к пробному ЕГЭ от 7 декабря
  2. Правила комбинаторики в задаче B6
  3. Типичные задачи B12 с функциями