Физический смысл производной в задаче 7

15 мая 2014

Иногда в задаче B9 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» B9.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=x\left( t \right)$, то $v$ мы можем посчитать следующим образом:

\[v={S}'={x}'\left( t \right)\]

Точно так же мы можем посчитать и ускорение:

\[a={v}'={{S}'}'={{x}'}'\left( t \right)\]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

\[x\left( t \right)=-\frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t\]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

\[v={S}'={x}'\left( 2 \right)\]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

\[{x}'\left( t \right)=-\frac{1}{5}\cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

\[{x}'\left( t \right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

Нам требуется найти производную в точке 2. Давайте подставим:

\[{x}'\left( 2 \right)=-{{2}^{4}}+4\cdot {{2}^{3}}-3\cdot {{2}^{2}}+5=\]

\[=-16+32-12+5=9\]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

\[x\left( t \right)=\frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11\]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

\[{x}'\left( t \right)=\frac{1}{3}\cdot 3{{t}^{2}}-4\cdot 2t+19\]

\[{x}'\left( t \right)={{t}^{2}}-8t+19\]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

\[{{t}^{2}}-8t+19=3\]

\[{{t}^{2}}-8t+16=0\]

\[{{\left( t-4 \right)}^{2}}=0\]

\[t-4=0\]

\[t=4\]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:
  1. Не допускайте таких ошибок, когда видите график производной в задаче 7 из ЕГЭ по математике!
  2. Задача 7: касательная и квадратичная функция с параметром
  3. Пробный ЕГЭ-2011 по математике, вариант №4
  4. Пробный ЕГЭ 2012. Вариант 7 (без производных)
  5. Задачи B6 с монетами
  6. Быстрое возведение чисел в квадрат без калькулятора