Задачи про кредиты, в которых неизвестно время

12 октября 2015

В этом уроке мы разберём, как решаются самые сложные задачи про кредиты из ЕГЭ по математике — в них неизвестно время. В первую очередь запомните формулу, связывающую общую сумму кредита, процент, срок и ежемесячные платежи:

$C\cdot {{x}^{n}}=P\cdot \frac{{{x}^{n}}-1}{x-1}$.

Где $C$ — общая сумма кредита, $x$ — процент, $P$ — ежемесячный платёж, а число $n$ — это срок, на который берётся кредит. Именно его мы сегодня и будем искать, для чего нам потребуется выполнить два шага:

  1. Примерно оценить срок. Для этого достаточно разделить кредит на платёж, а полученное число округлить в большую сторону. Если при делении получилось целое число, просто увеличиваем его на единицу.
  2. Убедиться, что это число и есть ответ. Для этого придётся посчитать несколько степеней от довольно некрасивых чисел: 1,1; 1,03 и т.д.

Решая эту задачу, всегда помните связь между сроком и размером ежемесячного платежа:

Чем больше срок, тем меньше ежемесячный платёж. И наоборот: чем меньше срок, тем больше платёж.

Кроме того, есть важное правило, которое позволит существенно сократить объём выкладок. Вместо того, чтобы искать значение, скажем${{1,03}^{7}}$, можно найти какую-нибудь промежуточную степень (всё, что больше куба, для этого числа уже считается проблематично), а затем продолжить работу с верхними и нижними оценками этого числа. Что это за оценки и как с помощью них решить задачу 17 вдвое быстрее — смотрите в видеоуроке.:)

Самая сложная задача про кредиты из ЕГЭ

Сегодня мы разберем то, о чем я обещал поговорить еще в прошлом учебном году, когда мы впервые познакомились с задачами с экономическим содержанием из ЕГЭ по математике. Вообще, с момента появления этой задачи в Едином государственном экзамене прошло довольно много времени, и с тех пор такие задачи стали более разнообразными, чем изначально, однако самая сложная и часто встречающаяся задача осталась неизменной. Именно о ней мы сегодня и поговорим. А точнее, речь пойдет о самом сложном варианте этой задачи — о задаче на выплаты и кредиты, когда работает универсальная формула сложных процентов, выведенная в предыдущем видеоуроке, однако неизвестно в этот раз не кредит и не платеж, а именно время, на который взят этот самый кредит.

Формула сложных процентов в математике

Откуда берется эта формула расчета сложных процентов и как вообще все это работает, я подробно объяснял на предыдущем видеоуроке, поэтому если вы его не смотрели, очень рекомендую посмотреть. Однако из того же самого видеоурока возникла куча вопросов и, в частности, разбор самой сложной задачи мы оставили на потом. Именно этим мы сегодня и займемся.

Прежде чем решать эту задачу, давайте запишем нашу классическую формулу расчета сложных процентов, а именно:

\[C\cdot {{x}^{n}}=P\cdot \frac{{{x}^{n}}-1}{x-1}\]

Где $C$ — общая сумма кредита, $x$ — процент, $P$ — ежемесячный платеж, $n$ — срок, на который берется кредит.

Эту формулу мы выводили на одном из предыдущих видеоуроков, ее можно без всяких сомнений использовать на настоящем экзамене, при этом предварительно обосновав примерно так же, как это сделано в предыдущем видеоуроке.

Задача № 1

Итак, экономическая задача, в которой неизвестной искомой величиной является время:

1 января 2015 года пенсионерка взяла в банке 1,5 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 10 процентов на оставшуюся сумму долга (то есть увеличивает долг на 10%), а затем пенсионерка переводит в банк платеж. На какое минимальное количество месяцев пенсионерка может взять кредит, чтобы ежемесячные платежи составили не более 350 тыс. рублей?

Шаг первый: выписываем известные данные

Итак, начинаем решать нашу задачу. Во-первых, выпишем все, что нам известно. Прежде всего, нам дан общий объем кредита:

Кредит = 1 500 000

Известно, что ежемесячный платеж не должен превышать 350 тыс. рублей. Давайте так и запишем:

Платеж = 350 000

Кроме того, известен процент. Мы знаем, что если 10% записать в виде коэффициента, то это будет:

% = 1,1

Шаг второй: составляем уравнение, используя формулу вычисления сложных процентов

А то, что нам неизвестно, так это число $n$ в данном уравнении. Давайте подставим все, что мы знаем в формулу сложных процентов и посмотрим, что получится:

\[1500000\cdot {{1,1}^{n}}=350000\cdot \frac{{{1,1}^{n}}-1}{1,1-1}\]

\[150\cdot {{1,1}^{n}}=35\cdot \left( {{1,1}^{n}}-1 \right)\cdot 10\left| :5 \right.\]

Давайте введем замену:

\[{{1,1}^{n}}=t\]

\[\]

В этом случае получим:

\[3t=7\left( t-1 \right)\]

\[3t=7t-7\]

\[-4t=-7\]

\[t=\frac{7}{4}=1,75\]

Вспоминаем, что такое $t$. Нам предстоит решить следующее уравнение:

\[{{1,1}^{n}}=1,75\]

Шаг третий: находим наименьшее значение

Если вы попытаетесь решить данное уравнение с помощью калькулятора, то у вас ничего не получится — числа будут либо больше, либо меньше, но точного значения вы не получите. Поэтому давайте еще раз вернемся к условию задачи и прочитаем, что ежемесячные платежи должны составить не более 350 тыс. рублей. Давайте задумаемся: чем на больший срок берется один и тот же кредит, тем меньшими являются ежемесячные платежи. А поскольку нам требуется, чтобы ежемесячные платежи были не более 350 тысяч рублей, то это значит, что срок должен быть не менее чем указанный. На самом деле, с учетом того, что точно этому сроку наше значение не может быть равно, мы получаем, что нам нужно решить не уравнение, а неравенство вида

\[{{1,1}^{n}}>1,75\]

Еще раз внимательно посмотрите на этот переход — это принципиально важный момент во всей задачи. Мы не можем подобрать точное натуральное значение $n$ такое, чтобы $1,1$ в этой степени давала $1,75$, поэтому теперь наша задача — найти минимальное натуральное $n$ такое, чтобы выполнялось это неравенство. Спрашивается: а почему минимальное? Ведь можно взять кредит на 100 лет и тогда уж точно все получится, т.е. ${{1,1}^{n}}$ будет больше, чем $1,75$. Однако нам в задаче требуется найти именно минимальное количество. Поэтому из всех таких $n$, которые удовлетворяют этому неравенству, мы выберем наименьшее, а, по сути, мы сейчас сами найдем это самое наименьшее.

Составим небольшую таблицу.

месяц $\left( n \right)$ ${{1,1}^{n}}$
1 1,1
2 1,21
3 1,331
4 1,4641
5 1,61051
6 1,771561

И вот мы впервые превзошли искомые ограничения — $1,75$. Обратите внимание: пяти месяцев нам еще недостаточно, потому что коэффициент не достигнет желаемой величины, а шести месяцев уже достаточно, потому что он не только достигнет, но и превзойдет желаемую величину. Поэтому окончательный ответ — шесть месяцев. 

Нюансы решения

Как видите, в этом нет ничего сложного, даже если от нас требуется найти именно срок. Единственное, что нас могло смутить — довольно большой объем вычислений в самом конце, когда мы считали степени $1,1$. Однако неудивительно, так как это одна из самых последних и самых сложных задач из ЕГЭ по математике, поэтому если бы здесь было совсем все просто, то за нее не давали бы три первичных балла.

Кроме того, хотел бы обратить ваше внимание на окончательное обоснование ответа. Напоминаю, что мы решаем задачу из второй части: здесь недостаточно написать ответ, а нужно предоставить полное и грамотное обоснование. Итак, возводя в степени, мы в определенный момент получаем такие значения: $1,61051$ и $1,771561$. Возникает вопрос: а почему мы выбрали второе число? Мы решаем данное неравенство, которое было обосновано ранее, и второе значение под наше неравенство уже подходит, потому что

\[{{1,1}^{6}}=1,771561\]

А в $1,75$во втором знаке стоит «пять», т.е. цифра меньше и, следовательно, это число меньше. А вот если мы попытаемся выбрать в качестве ответа пять месяцев и связанный с этим значением коэффициент $1,61051$, то нас этот вариант точно не устроит. Почему? Потому что если мы подставим его в исходную формулу сложных процентов и попытаемся по этим данным посчитать итоговый ежемесячный платеж, то он окажется больше, чем требуемые 350 тыс. рублей.

Для того, чтобы успешно решить эту задачу, в том числе, когда требуется найти срок необходимо учесть два момента: 

  1. Помнить формулу решения сложных процентов и желательно уметь выводить ее на экзамене. 
  2. Помнить зависимость между сроками и размерами платежей. Зависимость обратно пропорциональная: чем больше срок, тем меньше ежемесячный платеж и наоборот — чем больше ежемесячный платеж, тем меньше срок, в течение которого придется выплачивать один и тот же кредит.

Задача № 2

1 января 2015 года пенсионерка взяла в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 3 процента на оставшуюся сумму долга (то есть увеличивает долг на 3%), а затем пенсионерка переводит в банк платеж. На какое минимальное количество месяцев пенсионерка может взять кредит, чтобы ежемесячные платежи составили не более 220 тыс. рублей?

На первый взгляд задача ничем не отличается от предыдущей. Разве что пенсионерка стала более разумной, поэтому взяла лишь 1,1 млн. и, кроме того, процент в месяц составляет лишь 3%, а не 10%, и ежемесячные платежи должны составлять не более 220 тыс. рублей.

Шаг первый: выписываем известные данные

Вновь запишем нашу формулу сложных процентов:

\[C\cdot {{x}^{n}}=P\cdot \frac{{{x}^{n}}-1}{x-1}\]

Где $C$ — общая сумма кредита, $x$ — процент, $P$ — ежемесячный платеж, $n$ — срок, на который берется кредит.

Давайте запишем известные данные:

Кредит = 1100000

Платеж = 220000

% = 1,3

Шаг второй: составляем уравнение, используя формулу расчета сложных процентов

Подставляем все эти данные в формулу. Вновь нам неизвестен срок, т.е. $n$:

\[1100000\cdot {{1,03}^{n}}=220000\cdot \frac{{{1,03}^{n}}-1}{1,03-1}\left| :11 \right.\]

\[{{1,3}^{n}}=2\cdot \left( 1,03-1 \right)\cdot \frac{10}{3}\left| 3 \right.\]

Введем замену:

\[{{1,03}^{n}}=t\]

\[3t=20\left( t-1 \right)\]

\[3t=20t-20\]

\[3t=20t-20\]

\[-17t=-20\]

\[t=\frac{20}{17}\]

И вот тут мы натыкаемся на первую проблему, которой в предыдущей задачи не было: $\frac{20}{17}$ не переводится в «красивую» десятичную дробь, а нам нужна именно десятичная дробь, потому что когда мы сделаем таблицу, то будем возводить $1,03$ в разные степени, а она, будучи десятичной дробью в разных степенях, тоже будет давать десятичные дроби. На самом деле выход просто: просто разделим и оставим первые четыре знака:

\[\frac{20}{17}=1,17647...\]

Возвращаясь к нашей задаче, мы получим следующее:

\[t=1,17647...\]

Приравняем обе части:

\[{{1,03}^{n}}=1,17647...\]

По аналогии с предыдущей задачей несложно заметить, что нет такого натурального $n$, чтобы $1,03$ в этой степени давало нам $1,17647...$, поэтому мы спокойно заменяем наше равенство знаком неравенства:

\[{{1,03}^{n}}>1,17647...\]

При этом при решении данного неравенства в ответ пойдет наименьшее $n$. Давайте снова составим таблицу, где слева мы снова будем писать месяцы, а справа — коэффициент:

месяц $\left( n \right)$ ${{1,03}^{n}}$
1 1,03
2 1,0609
3 1,092727
4
5
6

Шаг четвертый: находим верхнюю и нижнюю оценку, используя «метод оценок» 

Мы столкнулись с еще одной проблемой: по мере роста номера месяца объем вычислений становится просто катастрофическим, поэтому дальнейшие вычисления нужно выполнять с помощью какого-то другого инструмента, иначе мы просто утонем в объеме выкладок. Эта проблема характерна для всех задач, в которых процент меньше десяти. Поэтому как только вы видите маленькие проценты, не думайте, что вам попалась легкая задача, наоборот — будут проблемы. Однако все эти проблемы легко решаются при помощи замечательного инструмента под названием «метод оценок». Сейчас я вам расскажу, что это такое и как его применять на примере данной задачи.

Итак, нам необходимо найти четвертую, пятую и шестую степень числа $1,03$. Мы находили при помощи предыдущей, умножая ее на $1,03$. Однако уже на третьем шаге объем вычислений оказался достаточно большим. Поэтому чтобы не утонуть в вычислениях, выполним следующую манипуляцию: давайте посмотрим на числа, которые у нас получились при возведении в квадрат и в третью степень. Сначала рассмотрим, что получилось в квадрате:

\[{{1,03}^{2}}=1,0609\]

Давайте отсечем два знака после запятой и запишем просто $1,06$. То же самое сделаем с третьей степенью, в которой мы получили такое выражение:

\[{{1,03}^{3}}=1,092727\]

Отсечем два знака после запятой и получим $1,09$. В обоих случаях мы берем лишь первые два знака. Что нам это даст? Дело в том, что в любом случае $1,0609$, т.е. истинное значение второй степени будет больше, чем только что найденное значение:

\[1,06<1,0609\]

Аналогично можно сказать и про третью степень:

\[1,09<1,092727\]

А теперь возьмем и к этим числам в последнем разряде прибавим «единицу». Получим:

\[1,06+1=1,07\]

\[1,09+1=1,10\]

Замечательное свойство этих чисел состоит в том, что в первом случае

\[1,07>1,0609\]

А вот втором случае будет следующее неравенство:

\[1,1>1,092727\]

Давайте запишем вот так:

\[1,06<1,0609<1,07\]

\[1,09<1,092727<1,1\]

Полученные значения называются верхней и нижней оценкой или округлением с недостатком и округлением с избытком. И вместо того, чтобы мучится с огромным объемом вычислений, мы будем просто перемножать эти числа. Каким образом и на каком основании? Давайте заметим следующее:

\[{{1,03}^{4}}={{1,03}^{2}}\cdot {{1,03}^{2}}\]

\[{{1,03}^{5}}={{1,03}^{3}}\cdot {{1,03}^{2}}\]

\[{{1,03}^{6}}={{1,03}^{3}}\cdot {{1,03}^{3}}\]

Шаг пятый: находим наименьшее значение

Давайте заполним таблицу до конца:

месяц $\left( n \right)$ ${{1,03}^{n}}$
1 1,03
2 1,0609
3 1,092727
4 $1,06\cdot 1,06<*<1,07\cdot 1,07$
5 $1,06\cdot 1,09<*<1,07\cdot 1,1$
6 ${{1,09}^{2}}<*<{{1,1}^{2}}$

Что дают нам все эти верхние и нижние оценки? Во-первых, существенно сокращается объем вычислений, а, во-вторых, давайте посмотрим на последние значения:\[{{1,1}^{2}}=1,21\]

\[{{1,09}^{2}}=1,1881\]

Итого

\[1,1881<{{1,03}^{6}}<1,21\]

Что это значит? А то, что для $n=6$ мы уже точно превзойдем искомую величину. Мы уже знаем, что

\[{{1,03}^{n}}=1,17647<1,1881<{{1,03}^{6}}<1,21\]

В принципе, «шесть» нас уже устраивает — это кандидат в ответ. Но проблема в том, что в задаче от нас требуется найти минимальное количество месяцев. А что, если минимальное количество месяцев будет «пять»? Давайте посчитаем и повторим все те же вычисления для «пяти»:

\[1,1554<{{1,03}^{5}}<1,177\]

Но такие оценки нам ничего не дадут. Почему? Потому что если мы начертим числовую прямую и отметим на ней нижнюю и верхнюю оценки, то получим следующее: между $1,1554$ и $1,177$ находится ${{1,03}^{5}}$. Но также между ними есть и $1,17647$, которое мы должны превзойти. Если это число лежит правее $1,17647$, то нас все устраивает, и ответом будет «пять». Однако если оно будет левее, то «пять» нас не устраивает и ответом будет «шесть». Как же проверить, какое из чисел нас устраивает? К сожалению, в рамках верхних и нижних оценок, которые мы записали, ответить на этот вопрос невозможно – нам просто не хватает точности. Поэтому давайте еще раз выпишем значения для $n=2$ и $n=3$.

месяц $\left( n \right)$ ${{1,03}^{n}}$
2 1,0609
3 1,092727

До сих пор мы брали оценку с точностью до двух знаков после запятой. Но как только что мы убедились, такой точности недостаточно. Поэтому давайте возьмем оценку с точностью до трех знаков после запятой. В таком случае мы получим следующее:

месяц $\left( n \right)$ ${{1,03}^{n}}$
2 $1,060<1,0609<1,061$
3 $1,092<1,092727<1,093$

Таким образом, какой бы не было $n$ в выражение ${{1,03}^{n}}$, оно в любом случае будет больше, чем $1,06\cdot 1,092$, но в любом случае меньше, чем $1,061\cdot 1,093$.

Запишем вычисления:

\[1,06\cdot 1,092<*<1,59673\]

Это значит, что наши предположения верны. Искомое значение, если вновь попытаться начертить его на числовой прямой, будет снизу ограничено $1,1554$, а сверху —$1,159673$. Т.е. ${{1,03}^{5}}$ будет заведомо меньше, чем $1,159673$ и уж тем более меньше, чем $1,17647...$А это значит, что наше исходное предположение о том, что при $n=5$ мы уже превзойдем величину $1,17647...$ неверно. А это значит, что пятый месяц нас все еще не устроит. А вот шестой месяц, о котором мы сначала и подумали, действительно является таковым. Итого, окончательный ответ — шесть. Задача решена и полностью обоснована.

Полезные советы при решении задач с использованием формулы сложных процентов

Самое главное в это задаче — это понять, чем оценки отличаются от округления. Мы берем две цифры после запятой, отсекаем все, что идет после них, и записываем эти числа слева. Очевидно, что поскольку дальше идут какие-то цифры в настоящем числе, это число будет то, что мы получили слева (см. таблицу). Эти числа, которые находятся слева, и называются меньшими оценками. Затем к ним мы в самом последнем разряде (к последней цифре) прибавляем «единицу», и получаем число, на единицу большее в конце, например, было $1,06$ стало $1,07$ и т.д. Это будут верхние оценки. И далее, что бы мы не делали, какую бы степень и номер месяца не считали, все равно истинное значение нашей величины будет заключено между степенями верхней и нижней оценок.

Но есть одна проблема: в определенный момент мы получаем, что и число, и искомая величина лежат в одних и тех же пределах. Пределы получены, разумеется, при вычислении степеней оценок. В нашей ситуации такая проблема возникла в вычислениях значения для пятого месяца: левая оценка дала нам $1,1554$, а правая — $1,177$. Между этими двумя числами лежит как искомая величина, которую мы не знаем, так и наше искомое значение, т.е. ${{1,03}^{n}}$. Выход из такой ситуации напрашивается сам собой: если нам не хватает точности, то необходимо просто увеличить точность исходных оценок, т.е. после запятой мы берем не две, а три цифры. Но поскольку нас интересуют, прежде всего, верхние оценки, мы увеличим каждое из этих чисел на единицу в разряде, запишем и перемножим. В результате мы получим следующее: новая верхняя оценка для нашего числа, для пятого месяца, будет лежать между $1,1554$ и $1,159673$. 

На самом деле, пятый месяц даст коэффициент, который будет находиться в вышеуказанном диапазоне, что явно меньше, чем искомая величина $1,174647...$ На первый взгляд может показаться, что сложность и объем всех этих вычислений будет существенно больше, чем если бы мы просто возвели числа в степень квадрат, куб и т.д. На самом деле это не так. Уже на третьей и четвертой степенях возникают большие числа, а до пятого и шестого месяца вы просто не дойдете.

Как определить кандидата в ответ, исходя из условия задачи

В качестве заключительного аккорда сегодняшнего видеоурока я хотел бы вам рассказать еще один довольно хитрый инструмент, который позволит еще с первого взгляда на задачу уже примерно оценить, какой месяц предстоит считать и какой месяц, скорее всего, является кандидатом в ответ.

Давайте посмотрим на исходную формулу. Всего объем кредит, который предстоит выплатить, составляет 1,1 млн. при этом ежемесячно нужно выплачивать по 220 тыс. рублей. Давайте разделим общий размер задолженности на ежемесячный платеж. В этом случае мы получим количество месяцев, которые необходимо будет потратить на выплату кредита, если бы на нас не начислялись проценты. Однако сами по себе проценты невелики — в нашем случае всего 3% в месяц. Это значит, что вряд ли накопится задолженность еще больше, чем на один месяц и, следовательно, нужно прибавить к полученной величине еще единицу, и мы получим наиболее вероятный кандидат на ответ. 

В нашем случае, если 1,1млн. разделить на 220 тыс., то мы получим пять месяцев, но без учета начисленных процентов. Соответственно, еще один месяц потребуется на то, чтобы погасить проценты. И мы получим тот же самый ответ.

Однако хочу вас предупредить, что ни в коем случае нельзя использовать этот прием как единственно возможное обоснование того ответа, который у вас получается в задаче! Потому что мы решаем одну из самых сложных задач ЕГЭ: там требуется привести не только ответ, но и все подробные выкладки и обоснования. Такой прием — это лишь подсказка для нас самих, для того, чтобы понимать, какие именно месяцы, какие именно степени считать. Дальнейшим шагом нужно доказать, что, например, число, равное пяти месяцам, нас не устраивает, а шести месяцев точно устраивает. Каким образом можно это сделать. Например, с помощью числовой прямой, более точных вычислений, метода оценок или как вам будет удобнее. В любом случае, мы с учениками недавно убедились, что эта подсказка существенно облегчает выкладки и хотя бы дает представление о том, каким должен быть ответ.

Тренируйтесь, решайте задачи, оттачивайте навык с вычислением верхних и нижних оценок. Это далеко не последний урок на решение задач с экономическим содержанием, поскольку самих задач стало довольно много, и их условия стали более разнообразные. Поэтому оставайтесь с нами!   

Смотрите также:
  1. Как правильно составлять уравнения в задачах про кредиты из ЕГЭ по математике
  2. Производительность труда в задаче 17 из ЕГЭ по математике: сложные случаи. Нет, это не текстовые задачи.:)
  3. Пробный ЕГЭ-2011 по математике, вариант №8
  4. Площадь круга
  5. Четырехугольная пирамида в задаче C2
  6. Как решать простейшие логарифмические уравнения