Деление многочленов уголком

1 октября 2013

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

\[595:17=35\]

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

\[x-\left( -x \right)=x+x=2x\]

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Краткое содержание

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!     

Смотрите также:
  1. Теорема Безу: разложение на множители
  2. Стандартный вид числа
  3. Дополнительные соображения
  4. Правила комбинаторики в задаче B6
  5. Задача C2: уравнение плоскости через определитель
  6. Задачи на проценты: считаем проценты с помощью пропорции