Учет области значений модуля при решении уравнения

Очень часто в уравнениях под знаком модуля стоят довольно сложные конструкции, которые было бы крайне затруднительно раскрывать, а затем решать «напролом». Для таких случаев существует множество приемов и замечаний, позволяющих значительно ускорить вычисления.

Одним из таких приемов является учет области значений модуля (учителя называют это решение методом следствий). Суть его можно описать одним простым предложением: «Сумма неотрицательных чисел равна нулю тогда и только тогда, когда каждое из этих чисел равно нулю».

Сегодня мы продолжаем изучать конструкции, содержащие знак модуля функции и переходим уже к более сложным конструкциям, когда ихдва, либо само уравнение содержит нестандартную функцию.

Немного теории

Для начала вспомним определение модуля: модулем числа $x$ называется либо само это число (при условии, что оно неотрицательное), либо минус это число, если оно отрицательно:

\[\left| x \right|=\left\{ \begin{align}& x,x\ge 0 \\& -x,x<0 \\\end{align} \right.\]

Данная запись является алгебраическим определением, потому что здесь используется только алгебраическая терминология и никак не привлекается геометрия. И именно это определение позволяет нам заключить следующий факт: модуль числа всегда неотрицателен:

\[\left| x \right|\ge 0\]

Именно поэтому его иногда еще называют абсолютным значением, т.е. расстоянием от 0 до этого числа на числовой прямой. И именно тот факт, что модуль функции всегда является неотрицательным числом, позволяет решить целый класс задач, которые иначе решались бы весьма проблематично.

Решаем реальные задачи

Пример № 1

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]

Чтобы решить такое выражение, давайте для начала вспомним, как решается простейшая конструкция с модулем, т.е уравнение вида $\left| f \right|=g$.

Решаются она довольно просто. Рассматривается два случая: в первом случае $f$ неотрицательно — в этом случае модуль функции снимается без всяких изменений и получается, что $f$ равно $g$. А во втором случае $f$ отрицательно — в этом случае модуль раскрывается со знаком «минус», как мы уже знаем из определения. Запишем совокупность систем:

\[\left| f \right|=g=>\left[ \begin{align}& \left\{ \begin{align}& f\ge 0 \\& f=g \\\end{align} \right. \\& \left\{ \begin{align}& f<0 \\& -f=g \\\end{align} \right. \\\end{align} \right.\]

Но все это работает только при условии, что модуль функции в выражении один, а у нас сегодня сразу два. Что делать в такой ситуации?

Давайте заметим, что при сложении двух модулей возникает выражение, значение которого 0. Но, с другой стороны, мы можем записать следующее:

\[\left| x-{{x}^{3}} \right|\ge 0\]

\[\left| {{x}^{2}}+x-2 \right|\ge 0\]

В этом случае сумма вышеописанных двух элементов также будет давать некое число (назовем его $k$), которое больше или равняется 0. При этом от нас требуется, чтобы оно строго равнялось 0. А это значит, что нас устроит только тот вариант, когда каждый из модулей равен 0, т.е. мы можем записать:

\[\left| x-{{x}^{3}} \right|=0\]

\[\left| {{x}^{2}}+x-2 \right|=0\]

Другими словами, сумма двух чисел, каждое из которых не меньше 0, дает в сумме ноль только в том случае, когда каждое из них равняется 0, т.е. требования должны выполняться одновременно. Поэтому запишем систему:

\[\left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0 \\& \left| {{x}^{2}}+x-2 \right|=0 \\\end{align} \right.\]

Модуль функции равен 0, когда подмодульное выражение равно 0, т.е:

\[\left\{ \begin{align}& x-{{x}^{3}}=0 \\& {{x}^{2}}+x-2=0 \\\end{align} \right.\]

Давайте решим каждое из полученных выражений отдельно. Решаем первое:

\[x\left( {{1}^{2}}-{{x}^{2}} \right)=0\]

\[x\left( 1-x \right)\left( 1+x \right)=0\]

\[{{x}_{1}}=0\]

\[{{x}_{2}}=1\]

\[{{x}_{3}}=-1\]

При трех таких значениях тождество обнуляется.

Теперь разберемся со вторым выражением. Будем решать его при помощи формулы Виета:

\[{{x}^{2}}+x-2=0\]

\[\left( x+2 \right)\left( x-1 \right)=0\]

\[{{x}_{1}}=-2\]

\[x=1\]

А теперь вспоминаем, что мы решаем систему уравнений, т.е. нужно из первого и из второго наборов выбрать корни, которые принадлежат каждому из этих наборов. Очевидно, что такой корень только один — $x=1$.

Итого решением первого выражения является единственный корень $x=1$.

Как видите, такое решение оказалось существенно проще стандартного подхода. Здесь достаточно просто заметить,что сумма двух неотрицательных чисел равняется 0 только тогда, когда каждое из этих чисел имеет значение 0.

Пример № 2

Переходим ко второй конструкции:

\[\left| x-2 \right|=-{{x}^{6}}\]

На первый взгляд, можно сказать, что данная конструкция является простейшим уравнением. И, строго говоря, оно хорошо решается по выше записанной формуле, т.е. переходом от выражения с модулем функции к совокупности двух систем. Однако нас смущает степенная функция — степень слишком большая. Поэтому давайте заметим, что функция $f\left( x \right)={{x}^{6}}$ является не просто четной, но и еще неотрицательной на всей числовой оси. А это значит, что $-{{x}^{6}}$ всегда будет либо отрицательной, либо равняться 0. Однако с другой стороны от знака равенства у нас стоит модуль функции — а он всегда неотрицателен. Это значит что, слева значение больше или равно нулю, а справа — меньше или равно. И от нас требуется узнать, когда эти значения друг другу тождественны. Очевидно, что такими они могут быть только тогда, когда каждое из них равняется 0, потому что в противном случае они будут лежать по разные стороны от разделяющего 0, т.е. $\left| x-2 \right|$ будет постоянно отклоняться вправо, а $-{{x}^{6}}$ — влево. Поэтому наше выражением может быть переписано следующим образом:

\[\left\{ \begin{align}& \left| x-2 \right|=0 \\& -{{x}^{6}}=0 \\\end{align} \right.\]

Давайте решим эти конструкции:

\[\left\{ \begin{align}& x-2=0 \\& {{x}^{6}}=0 \\\end{align} \right.\]

Решаем каждое из этих выражений:

\[\left\{ \begin{align}& x=2 \\& x=0 \\\end{align} \right.\]

Мы получаем, что корень должен быть одновременно равен и 2 и 0. Это невозможно, поэтому решением данного выражения является пустое множество. Пусть вас не смущают подобные ответы при решении задач с модулями. Как и при работе с любыми другими функциями, накладывающими ограничения на область определения или значения в рамках задачи, в процессе решения сложных выражений с модулями функции вполне может оказаться, что этих решений просто не существует.

Ключевые моменты

  1. Сумма двух неотрицательных чисел равна нулю тогда, когда каждое из этих чисел равно нулю. В результате уравнение, которое само по себе далеко не тривиальное, разбивается на систему из двух отдельных уравнений, каждое из которых решается существенно проще.
  2. Тот факт, что модуль сам по себе является неотрицательным значением, можно использовать и иначе, например, когда с одной стороны стоит модуль функции (эта сторона неотрицательна), а с другой стороны — функция, которая меньше нуля или равна нулю. В этом случае все уравнение сводится к системе из двух уравнений, каждое из которых легко решается.

Как пример, второе вырадением может быть сведено к равенству первого вида следующим образом:

\[\left| x-2 \right|+{{x}^{6}}=0\]

Мы снова видим сумму двух функций, каждая из которых неотрицательна. Запомните этот прием, он очень эффективен при работе со всевозможными функциями, о которых точно известно, что они принимают лишнее отрицательное значение.

Смотрите также:
  1. Нестандартные уравнения с модулем
  2. Дробно-рациональные уравнения с модулем
  3. Тест к уроку «Что такое числовая дробь» (легкий)
  4. Сводный тест по задачам B15 (2 вариант)
  5. Как решать простейшие логарифмические уравнения
  6. Задача B4: вклад в банке и проценты