Теорема Виета

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов — теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

Примеры:

  1. x2 + 7x + 12 = 0 — это приведенное квадратное уравнение;
  2. x2 − 5x + 6 = 0 — тоже приведенное;
  3. 2x2 − 6x + 8 = 0 — а вот это нифига не приведенное, поскольку коэффициент при x2 равен 2.

Разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать приведенным — достаточно разделить все коэффициенты на число a. Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3x2 − 12x + 18 = 0;
  2. −4x2 + 32x + 16 = 0;
  3. 1,5x2 + 7,5x + 3 = 0;
  4. 2x2 + 7x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x2. Получим:

  1. 3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
  2. −4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
  3. 1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x1 и x2. В этом случае верны следующие утверждения:

  1. x1 + x2 = −b. Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x, взятому с противоположным знаком;
  2. x1 · x2 = c. Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

  1. x2 − 9x + 20 = 0 ⇒ x1 + x2 = − (−9) = 9; x1 · x2 = 20; корни: x1 = 4; x2 = 5;
  2. x2 + 2x − 15 = 0 ⇒ x1 + x2 = −2; x1 · x2 = −15; корни: x1 = 3; x2 = −5;
  3. x2 + 5x + 4 = 0 ⇒ x1 + x2 = −5; x1 · x2 = 4; корни: x1 = −1; x2 = −4.

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x2 − 9x + 14 = 0;
  2. x2 − 12x + 27 = 0;
  3. 3x2 + 33x + 30 = 0;
  4. −7x2 + 77x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x2 − 9x + 14 = 0 — это приведенное квадратное уравнение.
    По теореме Виета имеем: x1 + x2 = −(−9) = 9; x1 · x2 = 14. Несложно заметить, что корни — числа 2 и 7;
  2. x2 − 12x + 27 = 0 — тоже приведенное.
    По теореме Виета: x1 + x2 = −(−12) = 12; x1 · x2 = 27. Отсюда корни: 3 и 9;
  3. 3x2 + 33x + 30 = 0 — это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x2 + 11x + 10 = 0.
    Решаем по теореме Виета: x1 + x2 = −11; x1 · x2 = 10 ⇒ корни: −10 и −1;
  4. −7x2 + 77x − 210 = 0 — снова коэффициент при x2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x2 − 11x + 30 = 0.
    По теореме Виета: x1 + x2 = −(−11) = 11; x1 · x2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 — по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x2 отличен от 1), это легко исправить — взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5x2 − 35x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x2 − 7x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные — попробуем решить по теореме Виета. Имеем: x1 + x2 = −(−7) = 7; x1 · x2 = 10. В данном случае корни угадываются легко — это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5x2 + 8x − 2,4 = 0.

Смотрим: −5x2 + 8x − 2,4 = 0 — это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x2 − 1,6x + 0,48 = 0 — уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5x2 + 8x − 2,4 = 0 ⇒ D = 82 − 4 · (−5) · (−2,4) = 16 ⇒ ... ⇒ x1 = 1,2; x2 = 0,4.

Задача. Решите уравнение: 2x2 + 10x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x2 + 5x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x1 + x2 = −5; x1 · x2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно — лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 52 − 4 · 1 · (−300) = 1225 = 352. Если вы не помните корень из дискриминанта, просто отмечу, что 1225 : 25 = 49. Следовательно, 1225 = 25 · 49 = 52 · 72 = 352.

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x1 = 15; x2 = −20.

Смотрите также:
  1. Следствия из теоремы Виета
  2. Как решать квадратные уравнения
  3. Тест к уроку «Округление с избытком и недостатком» (1 вариант)
  4. Что такое ЕГЭ по математике 2011 и как его сдавать
  5. Уравнение плоскости в задаче C2. Часть 1: матрицы и определители
  6. Тест по задачам B14: легкий уровень, 1 вариант